Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins.

نویسندگان

  • Benjamin J Wylie
  • Lindsay J Sperling
  • Chad M Rienstra
چکیده

Here we examine the effect of magic-angle spinning (MAS) rate upon lineshape and observed peak position for backbone carbonyl (C') peaks in NMR spectra of uniformly-(13)C,15N-labeled (U-(13)C,15N) solid proteins. 2D N-C' spectra of U-(13)C,15N microcrystalline protein GB1 were acquired at six MAS rates, and the site-resolved C' lineshapes were analyzed by numerical simulations and comparison to spectra from a sparsely labeled sample (derived from 1,3-(13)C-glycerol). Spectra of the U-(13)C,15N sample demonstrate large variations in the signal-to-noise ratio and peak positions, which are absent in spectra of the sparsely labeled sample, in which most 13C' sites do not possess a directly bonded 13CA. These effects therefore are a consequence of rotational resonance, which is a well-known phenomenon. Yet the magnitude of this effect pertaining to chemical shift assignment has not previously been examined. To quantify these effects in high-resolution protein spectra, we performed exact numerical two- and four-spin simulations of the C' lineshapes, which reproduced the experimentally observed features. Observed peak positions differ from the isotropic shift by up to 1.0 ppm, even for MAS rates relatively far (a few ppm) from rotational resonance. Although under these circumstances the correct isotropic chemical shift values may be determined through simulation, systematic errors are minimized when the MAS rate is equivalent to approximately 85 ppm for 13C. This moderate MAS condition simplifies spectral assignment and enables data sets from different labeling patterns and spinning rates to be used most efficiently for structure determination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Resolution NMR of Anisotropic Samples With Spinning Away from the Magic Angle

High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might ...

متن کامل

Secondary chemical shifts in immobilized peptides and proteins: a qualitative basis for structure refinement under magic angle spinning.

Resonance assignments recently obtained on immobilized polypeptides and a membrane protein aggregate under Magic Angle Spinning are compared to random coil values in the liquid state. The resulting chemical shift differences (secondary chemical shifts) are evaluated in light of the backbone torsion angle psi previously reported using X-ray crystallography. In all cases, a remarkable correlation...

متن کامل

High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shi...

متن کامل

NMR in rotating magnetic fields: magic-angle field spinning.

Magic-angle sample spinning is one of the cornerstones in high-resolution NMR of solid and semisolid materials. The technique enhances spectral resolution by averaging away rank 2 anisotropic spin interactions, thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. In principle, it should be possible to induce similar effects in a static sample if the direc...

متن کامل

Multiple-Quantum Magic- Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids

Whereas solid state isotropic spectra can be obtained from spin-'/2 nuclei by fast magic-angle spinning (MAS), this methodology fails when applied on half-integer quadrupoles due to the presence of non-negligible secondorder anisotropic effects. Very recently, however, we have shown that the combined use of MAS and bidimensional multiple-quantum (MQ) spectroscopy can refocus these anisotropies;...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2008